

Universidad Nacional de Catamarca Facultad de Tecnología y Ciencias Aplicadas Departamento FORMACION BASICA

Año académico: 2019

UNIVERSIDAD NACIONAL DE CATAMARCA

FACULTAD DE TECNOLOGÍA Y CIENCIAS APLICADAS								
DEPARTAMENTO DE FORMACION BASICA								
				Código: 7007 - Ing. Informática				
PROGRAMA DE:				Área: Ciencias Básicas				
	FISICA I	ı		Curso: 2º Año				
I IOIOA II				Plan : 2011				
Carga horaria Total: 90 hs.				Régimen: Cuatrimestral				
				Cuatrimestre: Primero				
Horas				Cuerpo Docente				
Teórico – Práctico Actividad de Forma Práctica:			mación	Profesor Adj: Ing. Paola I. Beltrami				
				JTP: Ing. Fernando Coronel				
	FE ⁱ	RPI ⁱⁱ	ADyP ⁱⁱⁱ					
45	45							
Correlativas								
Análisis Matemático I				Física I				

OBJETIVOS:

Comprender los conceptos físicos de las áreas de Electrostática, Electromagnetismo Electricidad y Óptica. Interpretar situaciones reales de aplicación de los conceptos físicos. Resolver situaciones aplicando correctamente las leyes y propiedades. Aplicar conocimientos matemáticos en generalizaciones y aplicaciones de la Física.

CONTENIDOS MINIMOS:

Electroestática. Campo eléctrico. Condensadores y dieléctricos. Corriente eléctrica y resistencia. Campo magnético. Inducción. Electromagnetismo. Corriente alterna. Óptica geométrica y física.

PROGRAMA ANALITICO:

MODULO I: ELECTROSTÁTICA

<u>UNIDAD № 1:</u> CARGA ELÉCTRICA y CAMPO ELÉCTRICO

Cargas eléctricas, sus efectos. Propiedades eléctricas de la materia. Fuerza eléctrica: Ley de Coulomb. Ejemplos. Campo eléctrico. Líneas de fuerza o de campo eléctrico. Intensidad de campo eléctrico debido a cargas puntuales y distribuidas. Cálculo de campos eléctricos. Dipolo eléctrico. Movimiento de una partícula cargada en un campo eléctrico uniforme. Campo y carga dentro de un conductor. Flujo eléctrico. Ley de Gauss, aplicaciones.

UNIDAD Nº 2: POTENCIAL ELECTRICO

Trabajo eléctrico. Energía potencial eléctrica. Potencial Eléctrico. Cálculo de potenciales en cargas puntuales y distribuciones continuas. Superficies equipotenciales. Gradiente de potencial. Cálculo del campo eléctrico mediante el potencial. Potencial de un conductor cargado.

UNIDAD Nº 3: CONDENSADORES - DIELÉCTRICOS

Capacidad. Condensadores. Condensador plano. Cálculo de la capacidad. Conexión de

FISICA II Página 1

Universidad Nacional de Catamarca Facultad de Tecnología y Ciencias Aplicadas Departamento FORMACION BASICA

Año académico: 2019

condensadores. Energía de un condensador cargado. Dieléctricos. Constante dieléctrica. Capacitares con dieléctrico. Polarización de la materia: Vector polarización. Permitividad. Desplazamiento eléctrico. Ley de Gauss en los dieléctricos.

<u>UNIDAD № 4:</u> CIRCUITOS ELÉCTRICOS

Corriente eléctrica. Resistividad y Resistencia. Ley de Ohm. Modelo microscópico de la conducción. Fuerza electromotriz. Cambio de potencial y energía en un circuito. Potencia eléctrica. Leyes de Kirchhoff. Potenciómetro. Puente de Wheatstone. Instrumentos de medición: El galvanómetro, el amperímetro, el voltímetro.

MODULO II: ELECTROMAGNETISMO

UNIDAD Nº 5: FUERZA Y CAMPO MAGNÉTICO

Magnetismo. Campo magnético. Líneas de inducción o campo magnético. Flujo magnético. Fuerza magnética. Movimiento de una partícula cargada en un campo magnético. Fuerza magnética sobre un conductor que transporta corriente. Fuerza y par electromagnético. Motor elemental. Fuentes de campo B: Campo magnético de una carga en movimiento, de un conductor que transporta corriente, de una espira circular de corriente. Ley de Biot-Savart. Fuerza entre alambres paralelos. Experiencia de Ampere. Ley de Ampere. Solenoide.

UNIDAD Nº 6: FUERZA ELECTROMOTRIZ INDUCIDA

Ley de Fáraday: fuerza electromotriz inducida. Ley de Lentz. Ejemplos. Generador elemental. Generador de corriente alterna: parámetros característicos de la corriente alterna. Campos eléctricos inducidos. Corrientes parásitas. Inductancia mutua. Autoinducción. Energía magnética. Corriente de desplazamiento. Comparación entre los campos eléctricos y magnéticos. Ecuaciones de Maxwell.

UNIDAD Nº 7: EL MAGNETISMO EN LOS MEDIOS MATERIALES

Ley de Gauss para el magnetismo. Campos magnéticos en los medios materiales. Magnetón de Bohr. Corrientes superficiales. Magnetización. Clasificación de materiales magnéticos. Ferromagnetismo: Ciclo de Histéresis.

UNIDAD Nº 8: NOCIONES DE ELECTRONICA

Metales, aislantes y semiconductores. Diodo Sólido. Transistor. Ejemplos de Diagramas en Block: Osciloscopio y Distanciómetro: Principio de funcionamiento.

UNIDAD Nº 9: OPTICA GEOMETRICA Y FISICA

La luz: naturaleza y propagación. Leyes de reflexión y refracción de la luz. Índice de refracción. Reflexión total interna. Fibra óptica. Dispersión. Óptica Física: Principio de Huygens. Polarización.

ACTIVIDADES DE FORMACIÓN PRÁCTICA:

- ❖ Laboratorio Campo Eléctrico: Cuba electrolítica.
- ❖ Laboratorio Circuitos eléctricos: Ley de Ohm y Leyes de Kirchhoff, circuitos RLC.
- Laboratorio Campo Magnético: Galvanómetro de tangente
- Laboratorio Óptica: Formación de imágenes, Interferencia y Difracción.
- Taller de Fibras Ópticas.

Modalidad de la Actividad Práctica	Horas Totales	
Formación Experimental (simulación, otros)	45	
Resolución de Problemas de Ingeniería		
Actividades Proyecto y Diseño		

FISICA II Página 2

Universidad Nacional de Catamarca Facultad de Tecnología y Ciencias Aplicadas Departamento FORMACION BASICA

Año académico: 2019

BIBLIOGRAFÍA:

Titulo	Autores	Editorial	Año Ed.	Cant. Disp.
Física Universitaria, Vol. II	Sears, F Zemansky	Pearson Educación	2009	3
Física II	Resnik, Robert		2007	5
Física para la Ciencia y la Tecnología II	Tipler, Paul A.	Reverté S.A.	2005	2
Física para Ciencias e Ingeniería II	Serway, Raymond	Thomson	2005	2
Física II	Serway, Raymond	Thomson	2004	2
Elementos de Electromagnetismo	Sadiku, Matthew	Alfaomega	2003	1
Fundamentos de Electricidad y Magnetismo	Kip, Arthur F.	McGraw-Hill	1988	4

CONDICIONES REGULARIZACION / PROMOCION:

CONDICIONES PARA REGULARIZAR LA ASIGNATURA

Para regularizar la asignatura, el alumno deberá cumplimentar los siguientes requisitos:

- Lo previsto en el Reglamento General para alumnos (Ordenanza C.D.F.T. y C.A. Nº 004/2005).
- Aprobar dos (2) parciales teórico-prácticos o sus respectivos recuperatorios. Se aprueba con la resolución correcta del 50% de los problemas planteados.
- Desarrollar los prácticos de Laboratorios, con la presentación del correspondiente informe y su respectiva defensa.

> NO EXISTE PROMOCION

> CONDICIONES EXAMEN FINAL

- Alumnos regulares: con nota igual o mayor a 7 (siete): Examen Teórico
- Alumnos regulares: con nota menor a 7 (siete): Examen Teórico Práctico
- Alumnos libres: Examen teórico práctico dividido en dos instancias:
 - 1º: Práctico y Laboratorios.
 - 2º: Examen Teórico

Para rendir el examen es condición obligatoria aprobar la 1º instancia con nota superior a 4 y presentar la carpeta de Trabajos Prácticos con todos los ejercicios resueltos.

FISICA II Página 3

¹ FE: Horas dedicadas a la Formación Experimental

² RPI: Horas dedicadas a la Resolución de Problemas de Ingeniería

³ ADyP: Horas dedicadas a las Actividades de Diseño y Proyecto